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Abstract 

 The Spallation Neutron Source (SNS) is an accelerator-
based neutron scattering research facility. The linear 
accelerator (linac) is the principal accelerating structure 
and divided into a room-temperature linac and a 
superconducting linac. The normal conducting linac 
system that consists of a Drift Tube Linac (DTL) and a 
Coupled Cavity Linac (CCL) is to be built by Los Alamos 
National Laboratory. 

The CCL structure is 55.36-meters long. It accelerates 
H- beam from 86.8 Mev to 185.6 Mev at operating 
frequency of 805 MHz. This side coupled cavity structure 
has 8 cells per segment, 12 segments and 11 bridge 
couplers per module, and 4 modules total. A 5-MW 
klystron powers each module. The number 3 and number 
9 bridge coupler of each module are connected to the 5-
MW RF power supply.  The bridge coupler with length of 
2.5 ���is a three-cell structure and located between the 
segments and allows power flow through the module. The 
center cell of each bridge coupler is excited during normal 
operation. To obtain a uniform electromagnetic filed and 
meet the resonant frequency shift, the RF induced heat 
must be removed. Thus, the thermal deformation and 
frequency shift studies are performed via numerical 
simulations in order to have an appropriate cooling design 
and predict the frequency shift under operation. The 
center cell of the bridge coupler also contains a large 4-
inch slug tuner and a tuning post that used to provide bulk 
frequency adjustment and field intensity adjustment, so 
that produce the proper total field distribution in the 
module assembly.  

INTRODUCTION 
The Spallation Neutron Source (SNS) is an accelerator-

based neutron source that produces pulsed neutron beams 
by bombarding a mercury target with intense beams of 1-
GeV protons. It is being designed to meet the needs of the 
neutron scattering community in the United States well 
through the 21st century.  The SNS is scheduled for 
completion in December 2005 at Oak Ridge National 
Laboratory (ORNL).  
    The Project is being carried out by a multi-laboratory 
collaboration, led by ORNL and comprised of five other  
National Laboratories. Los Alamos National Laboratory 
(LANL) is one of them, and responsible for design and 
* Work supported by the Office of Basic Energy Science, Office of 
Science of the US Department of Energy, and by Oak Ridge National 
Laboratory. 
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construction of the room temperature linear accelerator 
(Linac), while Jefferson National Laboratory builds the 
superconducting Linac. The normal conducting linac 
consists of a drift-tube linac (DTL) and a coupled-cavity 
linac (CCL).  The total length of CCL section is 55.36-
meters. It accepts beam from the DTL at 86.8-Mev and 
delivers it to the superconducting accelerator at 185.6-
Mev.  It operates at a radio frequency (RF) of 805 MHz. 
the CCL has 4 modules. A 5MW klystron is utilized for 
each module that consists 12 segments and 11 bridge 
couplers.  The number 3 and number 9 bridge coupler of 
each module are connected to the 5 MW RF power 
supply.  The feed is through a slot iris in the center-
powered cell. The body of the coupler is copper. The 
flanges and the waveguide transition section are copper 
plated stainless steel. The bridge coupler final design was 
changed to welded assembly from brazed assembly at the 
preliminary design [1]. The copper cooling covers are 
attached at the outer surface with e-beam welds. All welds 
are full-penetration face welds with designed backing 
material in the joints. The improved design includes that a 
large 4-inch slug tuner port that allows considerable 
tuning range and access to the center cell for shorting 
during tuning.  The tuner is water-cooled. A previous 
tabbed post design was replaced with a single rod from 
top. 

The final thermal/structural analysis and frequency shift 
studies for the improved CCL bridge couplers have been 
presented at the CCL final design review [2]. Figure 1 
shows the final designed two types of CCL bridge 
couplers.  
  

Type 1: Bridge Coupler with RF Feeds 
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Type 2: Bridge Coupler without RF Feeds 

 
Figure 1: Coupled Cavity Linac Bridge Couplers 

 
    The bridge couplers are supported from the adjacent 
CCL segments and are free to axially expand or contract 
with the segments, as shown in Figure 2. 

 
Figure 2: Bridge Coupler Location between segments 

 
RF power is dissipated on the center cell walls. The 

thermal expansion that results from RF heating causes a 
resonant frequency shift and also mechanical loading of 
the structure. A cooling system has been designed to 
mitigate the affects of the RF frequency shift and to 
adequately reduce induced thermal stress levels in the 
system.  To guide the cooling system design, studies of 
the thermal performance, associated induced stress levels 
and frequency shift have been performed via numerical 
simulations. 

RF HEATING AND COOLING SCHEME 
The SNS bridge couplers are 3-cell structures of 2.5-�� 

total length. The cross section of powered cell geometry is 
shown in Figure 3. Only the center cell is subject to the 
significant surface heating. The center cell length for all 
44-bridge couplers increases along the CCL from 22.4 cm 
to 35.6 cm. The two end lateral cells are of constant 
length throughout the CCL. Each bridge coupler joints 
two CCL segments, coupling them together forming a 
multicavity accelerating structure.  The two end cells are 
connected to the center cell via slots in the dividers or 
nose plates. Thus, the bridge coupler accommodates RF 

power transmission from one segment to the next with 
proper phase matching. Presence of the resonant electro-
magnetic fields creates electrical currents on the interior 
skin of the coupling cell and thus deposits thermal energy 
into the cell walls that causes thermal distortions which 
result in a resonant frequency shift and induced stresses. 

Cooling channels  

 

 
Figure 3: Powered Bridge Coupler

 
Under normal operation, approximately 2
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FINITE ELEMENT ANALYS
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vacuum loading. The maximum calculated von Mises 
stress that occurs at the weld joints of the cavity wall and 
plate is approximately 2,000-psi (~ 40% yield stress of 
OFE copper). The temperature profile and the thermal / 
structural stress contours resulting from RF heating and 
external atmospheric pressure for the bridge coupler are 
shown in Figure 4.  

 

           
  Figure 4: Temperature and von Mises stress contours 
 

As described above, the center cell lengths of the bridge 
couplers increase with increasing energy along the CCL, 
simplified two-dimensional axisymmetric models for the 
first bridge coupler and the last one have been generated 
from SUPERFISH output files directly. The simulation 
results show that the calculated stress distribution in 
regions away from coupling slots matches the results for 
the 3-D model. Calculated von Mises stress levels at the 
nose plate and wall weld joint region for the first coupling 
cell is approximately 2700 psi (48% yield stress of OFE 
copper). This is slightly higher than the result from 3-D 
calculation. This is because the 3-D model accurately 
represents the bridge coupler geometry, where as the 2-D 
model simplifies the external pressure loading and 
constraints due to the adjoining coupling cell. Von Mises 
stress levels at the nose plate and wall weld joint region 
for the last coupling cell is approximately 3200-psi (58% 
yield stress of OFE copper). Two-dimensional 

axisymmetric models were created because they allow 
easy calculation of resonant frequent shift for any bridge 
coupler in the CCL. The stress plots for the 2-D models 
are depicted in the Figure 5.   
 �
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REQUENCY SHIFT STUDIES 
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Frequency shift calculations were averaged for two 
different load cases to reasonably predict 3-D behavior 
with the 2-D axisymmetric models. Figure 6 shows the 
deformation of the first bridge coupler under two loading 
cases. The Calculated frequency shift of the first coupler 
center cell for case 1 is –9.5 kHz, while the 
f for case 2 
is –147.2 kHz. The average frequency shift at the first 
bridge coupler center cell is approximately – 78.4-kHz.  

 

 
Figure 6: Beta 0.404 Bridge Coupler Deformation Profiles 

under Thermal and Vacuum Loading  
  
 The calculated frequency shift for the last bridge 
coupler is approximately –54 kHz for case 1 and –156 
kHz for case 2. A frequency shift of approximately –105 
kHz is predicted for the center cell of the ������ bridge 
coupler��The calculated deformations of the last bridge 
coupler for the two loading cases are depicted in Figure 7.  
  

 

 

Case 2: Only one side of 
the nose plate is under 
vacuum.  

Unit: mm 

Case 1: Both sides of the 
nose plate are in vacuum. 

Figure 7: Beta 0.55 bridge coupler thermal/vacuum  
load displacement profiles Nose plate 

 
 Note that the heat load of the axisymmetric 2-D model 

does not include the additional heating due to presence of 
the coupling slots. The calculated maximum temperature 
rise for the 2-D model is 1.20C lower than the calculated 
value from the 3-D model.  
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CONCLUSION 
Case 2: One side of nose
plate is in vacuum This report summarizes the thermal/structural 

calculation results utilizing finite element analysis for the 
SNS CCL bridge coupler.  At normal operation, the 
maximum temperature rise for the 44 bridge couplers 
varies from 20 C to 50 C. The maximum calculated von 
Mises stress is no more than 50% of the yield stress of 
OFE copper.  The calculated RF frequency shift caused 
by thermal and vacuum loading varies from –78 kHz to –
105 kHz.  The bridge coupler was fabricated for the CCL 
hot model and has been successfully tested.  The 
frequency shift value is within the tunable range. From a 
practical standpoint, each bridge coupler will be tuned 
during final assembly to a pre-determinable frequency to 
give a nominal 805 MHz resonance during the powered 
operation.   
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